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AbslracL We consider slandsrd (Bernoulli) bond percolation on a subgraph G of Zd. 
Denote lq 8 ( p ,  C) and , y (p ,G)  the percolalion probabilily and the mean cluster size, 
and p . ( C )  := sup{p : B ( p ,  G) = 0). It is widely believed thal lhe power laws hold as 
follows: 

~ ( P , G )  - % c ( G ) ,  G )  (P - p c ( G ) Y  P > p c ( G )  

and 

x ( P , G )  ~ ( P G ( C ) - P ) - ’  P C P ~ G )  

for some positive mnstanis 0 and y which only depend on d .  However, we find this 
mnjecture is not true for some non-periodic subgraphs of Z2. 

1. introduction and statement of rrsults 

We consider standard (Bernoulli) bond percolation on a subgraph G of Z d  in which 
all bonds are independently occupied with probability p and vacant with probability 
1 - p. The corresponding probability measure on the configurations of occupied and 
vacant bonds is denoted by Pp. The cluster of the vertex z, C(z, C), consists of 
all vertices which are connected to 1: by an occupied path on G. An occupied path 
is a nearest-neighbour path on G, all of whose bonds are occupied. By convention 
we always include z in C( I, C). For any collection A of vertices, IAl denotes the 
cardinality of A. The percolation probability is 

%,G) = Pp(IC(O,G)I = 00) (1) 

and the critical probability is 

p , ( G )  = sup{p : @(P, G) = 0).  

Some other important functions are also defined as follow; the mean cluster size: 

X ( P ,  C )  = E,IC(O, G)l 

x’(P,G)  = E,(IC(O,G)I;IC(O,G)I < 00) 

(2) 

the mean size of a finite cluster: 

(3) 
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the wrrelation length: 

{ - ' ( p , G ) =  n-w lim ( -~ logPp(O++8B(n)on  G)} i f p < p , ( G )  (4) 
or 

{ - ' (p ,G)= lim {-$logPp(O+-8B(n)on G,lC(O,C)I <CO))  

and, finally, the number of clusters per vertex: 

n-w 

if P 2 P,(G) (5) 

K ( P , G )  = ~ p ( ~ c ( o , G ) ~ - ' )  (6) 
where B(n) = [-.,.Id, as(.) = {x E Zd :I[ x II= n}, E,(X;A) is the mean of 
X on the event A, that is to say, E , ( X ; A )  = E p ( X I A ) ,  and A CI B means that 
there exists an occupied path from some vertex of A to some vertex of B for any 
sets A and B. 

It k clear that interesting phenomena occur when p is near to its critical value 
p,.  These wncern largely the behaviour of 0, x, X I ,  { and K when Ip - p,l is 
small. Indeed, it is widely believed (see e.g. Kesten 1982, 1987b, Grimmett 1989) that 
so called power laws and critical exponents exist on the Z d  lattice or on a general 
periodic subgraph G of Z d  (see the definition in Kesten H 1982). More precisely, 
LIlC p w c 1  laws arc U I l I U U U ~ U  a> lulluwrllg: .I.̂  -~ ... ^_ L . . "  ~ - -  : -.-- >.~... .- r.11.~~.1_.. 

~ ( P , G ) - ~ ( P , ( G ) , G ) % ; ( P - P , ( G ) ) ~  as P I  P , ( G )  (7) 
X(P, G )  ( p C ( G )  - P ) - ~  a P T p C ( G )  (8) 
X'(P ,G)  = ( P  - P , ( G ) ) - ~  as P 1 P,(G)  (9) 
E ( P ,  G) % IP,(G) - P I - '  as P -+ P,(G) (10) 
K " ' ( P , G )  % I P - P , ( G ) I - ' - "  P-'P,(G) (11) 

C1IP-P,lA < f(P) < C,lP-P,l 

for some positive constants 13, y, U and a which are called critical exponents. Here 
f(p) % Ip - pclA means that 

A 

for some psi!ive nL!mhm ci and C i ~  SQ far !he pnwer !aws have been shown to 
hold partially only on high dimensional lattices (see Hara and Slade 1990). However, 
instead of the Zd lattice or a periodic subgraph of Zd,  we shall concern ourselves with 
any subgraph of Zd.  Our central question then is whether the power laws still hold. 
Unfortunately, when considering percolation in some wedges which are non-periodic 
graphs, we find that the power laws no longer hold. Indeed, there are many interesting 
results in the studying of percolation on wedges (see e.g. Grimmett 1983, 1985, C h a p  
and Chayes 1986, Grimmett 1989). In particular, many strange phenomena are found 
on wedges such as that the percolation probability is discontinuous at the critical 
point. In the current paper, we shall show another strange phenomenon on wedges, 
that is, the failure of the  power laws. More precisely, we shall think of G as a graph 
whose edges are bonds in 

(12) rvn\  viy, - ~ r -  - ~ i- ixl ,z2) E 2 2 .  n, - , - 1 -  \ - - m 
~ ~ ~ - L z ~ ~ i ~ l J ~ ~ l I ~ u I  

where g is a specified function on [O,m) taking non-negative values. Specifically, 
we are interested in the function y ( x )  = I" in (12) for some a < 1. Then it 
follows theorem 9.55 and theorem 9.12 in Grimmett (1989) that p , ( G ( z a ) )  = f and 
B( $, G( z")) = 0. With the definition (12) we now state our main results. 
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Theorem 1. There exist constants C,(p) > 0 and r (p)  > 0 such that 

for all p > 4. 
Remark 1. (a) Equation (7) does not hold for B(p,G(z")). 
0) Q(p,  G(z")) is infinitely differentiable in p on [0,1]. 

Regarding the other parameters, we have: 

Theorem 2. (a)x'(p, G(z")) and ~ ( p , G ( z " ) )  are infinitely differentiable for all p 
and x(p, G(za))  < cc at p = 1. 2'  

@ ) € ( P , G ( ~ ~ ) ) = € ( P , ~ ~ )  i f p S  f and E(p,G(z')) = c o i f p 2  f .  
Remark 2. Relations (8)-(11) are not true for G(z"). 

2. Proofs 

We introduce the definition of planar duality first. Define Z' as the dual graph with 
vertex set {v + (i, i)} for 2) E Z2 and edges jointing all pairs of vertices which are 
one unit apart. For any bond set A, we write A' for the corresponding dual bonds of 
A. For each bond b' E Z', we declare that b' is occupied or vacant if b is occupied or 
vacant. In other words, each occupied (vacant) b' crosses a corresponding occupied 
(vacant) bond in Zz. By some geometric observations (see e.g. Kesten 1982), B( n )  
is connected by an occupied path from its left side to its right side if and only if 
B*(n)  cannot be connected by a vacant path from its top side to its bottom side. 
We call this 'the duality property'. 

Prwf of theorem 1. 
B(n)  and B'(n)  by 

c ( p , n )  = Pp(3 an occupied path from the left edge to the right edge of B ( n ) )  

u*(p ,  n)  = Pp(3 a vacant path from the top edge to the bottom edge of B'(n) ) .  

The principal step we need is to show that the vacant crossing probabilities of squares 
are bounded away from zero when p is near $ from above. 'RI make this precise, we 
first define 

Define the occupied and the vacant crossing probabilities of 

L ( p )  = min{n : a ( p , n )  > 1 - e U )  p > f (14) 

where E" is some small, but strictly positive number whose precise value is not 
important. The important property is that 6" can be chosen such that there exists a 
constant 6 for which 

d p , n )  2 6 u ' ( P , ~ )  3 6 (15) 
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uniformly in n < L ( p ) .  It is shown in Kesten (1987a) that such a choice of E,, is 
possible. Note that the continuity of U in p implies that 

rr($,n) 2 6 and u ' ( $ , n )  2 6 (16) 

L ( P ) =  ( P -  2) . 
for all n. L ( p )  is also called the correlation length. It is believed that 

1 -U 

However, we do not need such a sharp estimation. Indeed, equations (4.5) and (4.6) 
in Kesten (1987a) imply 

(17) 
1 -112 U P )  2 C1lP- T I  

for some constant C, > 0, which would suffice for our purposes here. Wtth this 
knowledge, our theorem 1 becomes obvious. For each p > f .  we choose n such that 

n = Cl ( p  - 4)- 112 . Clearly 

f-YP,G(t")) < PJD,) ('8) 

where D, is the event that there is an occupied path from the origin to a B ( n )  
in G(z"). We follow the proof of theorem 9.55 in Grimmett (1989) to construct 
a sequence of boxes in the dual of Z 2 .  Define {wk} to be a sequence of vertices 
along the X-axis such that wu = (zu,yu) = (O,O),w, = (zI,yl) = (1  + 2 , 0 ) , w 2  = 
(z2,y2)  = (q + z; t 2,0),...,wi = ( q , y i )  = ( z , - ~  + zp-l t 2 , 0 ) , . . .  (see 
figure 1). 

Flgurc 1. ?he existence of many vacanl paths [ram lhe lop to lhe botlom in the boxes 
{B:) prevents lhe farmatian of an occupied path in G(z")  from Ihe origin to aB(n).  

Then we take 

J = max{i : z, < n )  

Clearly 
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Wr each i, construct a square box Bi in Zz with side length xs and with w ; _ ~  + 1 
and wi - 1 as the left and the right of the lower side. Therefore, the upper side 
of Bi lies strictly above the curve z4 (see figure 1). Let Ai be the event that B: 
contains a vacant path from a vertex on its upper side to a vertex on its lower side. 
Thus, by the duality property, (15) and (17) 

(20) c , ( p - l / z ) - ~ l ' ~  pp(Dn)  < (1-  P,(Ai))"@ 6 (1 - 6 )  

In particular, by (16) 

for any n. Hence theorem 1 is proved by (20). 0 

Proof of remark 1. It follows from theorem 1 that remark l(a) is self evident. Now 
we prove l(b). Clearly, O(p,C(za)) is infinitely differentiable if p < f by theorem 1. 
Specifically, it is a consequence of theorem 1 that 

O(""(d,G(z")) = O  

for any m. Let F, be the event that C(0, c ( P ) ) n a B ( n )  f 0 and C ( O , G ( P ) ) n  
a B ( n  + 1) = 0. Then 

If F,, occurs, there exists a vacant cluster in the duality of Z z  from some vertex of 
aB(n+ 1) which contains at least no vertices. Therefore, it follows from (5.75) in 
Grimmett (1989) that 

P,(F,) n"exp(-Cn") (23) 

for some constant C if p > i. After that t h e  infinite differentiablity of B ( p ,  C(za)) 
can follow by the argument of Russo (1978) (see section 6.8 in Grimmett (1989) for 

0 

Proof oflheorem 2. By (21) and (23), there exist constants C > 0 and B > 0 such 
that 

details) if p > i. Therefore, remark l(b) is proved. 

P,(F,) c exp(-CnB) (24) 

for all n and p 4. Since 

k 

and 
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we then can show the property of infinite differentiability of ~ f ( p , G ( z O ) )  by using 
(24) and the Russo's argument if p 2 t .  When p < 4, we can also follow the proof in 
section 5.4 of Grimmett (1989) to show the infinite differentiability of x f ( p ,  G(z")). 
Clearly, the Same proof above also works for ~ ( p ,  G(z")). Furthermore, it follow 
from (21) again that ~ ( 4 ,  G(z")) < 00. Theorem 2(a) is thus proved. 

Now we show that theorem 2@) is true. Erst it can he seen that there exists a 
constant C > 0 such that 

CP,(O* a B ( n )  in C(logz)) 
4 Pp(O ++ aB(n)  in G ( z a ) )  < Pp(O - a B ( n ) ) .  (25) 

By theorem 5.2 in Chayes and Chayes 1986, we can deduce from (25) that 
[ ( p ,  2') = < ( p ,  G(z")) if p < t .  On the other hand 

p " ' + ' Q ( p , G ( z ' ) )  
< Pp( all the bonds on { a B ( n )  fl C(z")}' are vacant ) 

x P p ( O -  a B ( n )  on C(z")) 
< P p ( O - 8 B ( n ) o n  G(z"),IC(O,G(za)l < C O ) .  (26) 

Therefore, { ( p , G ( z a ) )  = m if p > 4 since a < 1. When p = f ,  it follows the 
continuity of [(p, 2') (see proposition 5.49 in Grimmett (1989)), (25) and (21) that 

E (59 ' G ( z a ) )  = < ( i , Z ' )  = CO. 

Hence theorem 2(b) is also proved. 

Proof of remark 2. The failure of (8)-(11) is implied by theorem 2 directly. 

0 

0 
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